翻訳と辞書 |
Nevanlinna invariant : ウィキペディア英語版 | Nevanlinna invariant In mathematics, the Nevanlinna invariant of an ample divisor ''D'' on a normal projective variety ''X'' is a real number connected with the rate of growth of the number of rational points on the variety with respect to the embedding defined by the divisor. The concept is named after Rolf Nevanlinna. ==Formal definition== Formally, α(''D'') is the infimum of the rational numbers ''r'' such that is in the closed real cone of effective divisors in the Néron–Severi group of ''X''. If α is negative, then ''X'' is pseudo-canonical. It is expected that α(''D'') is always a rational number.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Nevanlinna invariant」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|